Northeastern University
Engineering Probability and Statistics Part 1

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Northeastern University

Engineering Probability and Statistics Part 1

Rehab Ali

Instructeur : Rehab Ali

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
3 semaines à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
3 semaines à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Compétences que vous acquerrez

  • Catégorie : Data-Driven Decision-Making
  • Catégorie : Exploratory Data Analysis
  • Catégorie : Correlation Analysis
  • Catégorie : Statistical Visualization
  • Catégorie : Statistical Modeling
  • Catégorie : Descriptive Statistics
  • Catégorie : Statistical Analysis
  • Catégorie : Probability
  • Catégorie : Data Analysis
  • Catégorie : Probability & Statistics
  • Catégorie : Bayesian Statistics
  • Catégorie : Probability Distribution
  • Catégorie : Engineering Analysis

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

juillet 2025

Évaluations

17 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Il y a 7 modules dans ce cours

Welcome to your first step into the world of statistics! This module isn't just about numbers—it's about discovering how data can help us make smarter decisions, solve problems, and improve processes. While it may not be apparent, statistics impacts everyday life, and it plays a major role in engineering, from predicting trends to optimizing systems. In this module, you'll explore key ideas such as statistical thinking, understanding variability, and distinguishing between populations and samples. You'll also get hands-on experience with exploratory data analysis (EDA), where you'll learn how to collect, summarize, and visualize data to find meaningful patterns and uncover insights. By the end of this module, you'll have a strong foundation in statistical reasoning, setting you up for success in the rest of the course. So, let's get started and see how statistics can help you make sense of the world around you.

Inclus

4 vidéos28 lectures4 devoirs

Probability is all about understanding uncertainty and making informed decisions. Every day, we encounter situations where the result is unknown—whether it’s predicting the weather or playing a game of chance. In this module, you will learn the basics of probability, including how to define experiments, sample spaces, and events. You will also learn the difference between simple and compound events. A few key rules help us calculate and understand probabilities effectively. You will learn how to apply the complement, addition, and multiplication rules to calculate the likelihood of different events. We will also discuss conditional probability and independence so you can determine if events are related or completely independent. Counting principles such as permutations and combinations will also help you determine the number of possible outcomes in various scenarios. Finally, we’ll introduce Bayes’ Theorem, which is a powerful tool for updating probabilities as new information becomes available. By the end of this module, you will be able to define probability concepts, apply key probability rules, analyze conditional probability, use counting principles, and apply Bayes' Theorem to make data-driven decisions.

Inclus

2 vidéos16 lectures2 devoirs

In this module, we’ll cover some of the most fundamental concepts in statistics: random variables and probability distributions. These concepts enable us to mathematically model previously discussed probability-based scenarios. Specifically, you’ll learn how random variables act like the link between probability theory and analytics. We’ll also take a look at the difference between discrete and continuous random variables and examine some types of probability distributions.

Inclus

6 lectures2 devoirs

In this module, we’ll explore some important discrete probability distributions that help us model real-world randomness. These distributions provide a structured way to analyze uncertainty in everyday scenarios, from predicting defective products in manufacturing to estimating customer arrivals at a service center. We’ll cover the Binomial, Negative Binomial, Hypergeometric, and Poisson distributions. You'll learn how to choose the right distribution for the right scenario, model complex situations, and understand the fascinating Poisson process, which governs time-dependent events such as traffic flow and server requests. By the end of this module, you'll be equipped with the skills to analyze, model, and interpret discrete probability distributions, turning theoretical concepts into practical insights!

Inclus

4 vidéos14 lectures2 devoirs

In this module, we’ll learn about another type of random variable, continuous random variables. Based on this different type of random variable, we will be defining new types of probability distributions. We will explore the types of continuous random variables, probability distribution functions for continuous random variables, and then the uniform, normal, and lognormal distributions. By the end of this module, you'll be equipped with the skills to analyze, model, and interpret continuous variables and probability distributions, turning theoretical concepts into practical insights.

Inclus

1 vidéo14 lectures2 devoirs

In this module, we dive deeper into continuous probability distributions. You will explore the connections between the exponential and Poisson distributions in modeling event timing and how the gamma and Weibull distributions help analyze system reliability and failure rates. You'll also be introduced to the beta distribution, a flexible tool for modeling uncertainty in bounded processes. By the end of this module, you’ll be able to select and apply the right distribution for real-world problems, interpret key parameters, and understand their practical implications.

Inclus

3 vidéos14 lectures3 devoirs

In this module, we explore joint probability distributions—a powerful framework for analyzing how multiple random variables interact and relate to one another. You will learn how to model and interpret relationships between two random variables, whether they are continuous or discrete. We will begin by establishing the foundational concepts of joint probability distributions and examine how they capture the simultaneous behavior of random variables. You will learn to extract meaningful insights through marginal and conditional distributions, allowing you to understand both the individual behavior of variables and how they behave when other variables are fixed. Finally, we will investigate the critical concepts of covariance and correlation, developing your ability to quantify dependency relationships between random variables and determine whether they move together, in opposition, or independently. By the end of this module, you will have the analytical tools necessary to examine complex probabilistic systems involving two interrelated variables—an essential skill for advanced statistical modeling and data analysis.

Inclus

1 vidéo16 lectures2 devoirs

Obtenez un certificat professionnel

Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.

Instructeur

Rehab Ali
Northeastern University
3 Cours109 apprenants

Offert par

En savoir plus sur Probability and Statistics

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions