The Predictive Analytics and Forecasting course is designed for advanced learners aiming to develop practical skills in analyzing data to make forward-looking business decisions. As organizations increasingly rely on data-driven strategies, this course equips future managers with the ability to understand and apply predictive analytics tools for improved decision-making. Learners will explore key concepts in data mining such as regression, classification, clustering, and forecasting, with a strong focus on real-world business applications.

Early bird sale! Unlock 10,000+ courses from Google, Microsoft, and more for £160/year. Save now.


What you'll learn
Learn predictive analytics and data mining to uncover business insights.
Apply models to real-world challenges and enhance decision-making.
Skills you'll gain
- Dimensionality Reduction
- Forecasting
- Regression Analysis
- Data Mining
- Demand Planning
- Data Cleansing
- Machine Learning Algorithms
- Statistical Analysis
- Business Analytics
- Artificial Neural Networks
- Predictive Analytics
- Market Analysis
- Classification And Regression Tree (CART)
- Data Processing
- Data-Driven Decision-Making
- Customer Analysis
Details to know

Add to your LinkedIn profile
June 2025
52 assignments
See how employees at top companies are mastering in-demand skills

There are 18 modules in this course
Welcome to the Predictive Analytics and Forecasting course! Predictive analytics is about using statistical data mining to analyze current and historical facts to make predictions about future events. As the business world rapidly progresses toward a paradigm of data-driven decision-making, the primary goal of this course is to understand both the power and limitations of some of the predictive analysis tools. This course will provide an overview of predictive analysis tools of data mining and their uses with the volume of data and business cases. The course is designed to allow future managers to communicate effectively with the data science team within an organization. The course further acquaints you with how to understand customer behavior and motivations, customers’ need, market segmentation, retailing, and business forecasting with the power of predictive data mining tools. Finally, the course will demonstrate a handful set of predictive analytics and data mining tools that can help young managers to make data-driven decisions in today’s business scenario. This is an advanced course intended for learners with a background in data analysis and interpretation. The knowledge you gain from this course will help you pursue analytics careers in any industry. To succeed in this course, you should have prior experience in or a basic understanding of regression, correlation, data visualization, and interpretation of statistical results.
What's included
1 video1 reading
In this module, you will learn about various terminologies of data mining, such as predictive analytics, prescriptive analytics, data science, and business intelligence. Before starting with the core analytics, you should be first clear about the steps of data mining and how to pre-process your data before going for actual data analytics. This module also introduces you to various steps of data mining and data processing. After completing this module, you will be thorough with the preliminary steps of predictive analytics.
What's included
4 videos4 readings4 assignments1 discussion prompt
In this module, you will be able to develop your base for advanced predictive analytics through basic tools like correlation and regression. This module helps you differentiate between these two terms and acquaints you with how correlation measures the degree of association between two variables, whereas regression tells us about the functional relationship among the variables. In this module, you will be learning how to compute correlation coefficient, simple linear regression, and multiple linear regression for a given data set with the help of statistical software for social sciences. Finally, this module will cover the basic assumptions of multiple linear regression and help you test the significance of the correlation coefficient.
What's included
5 videos4 readings4 assignments
In this module, you will be introduced to naïve Bayes classification. One of the most common predictive analytics models is the classification model. This module also introduces you to how these models work by categorizing information based on historical data. This module will help you understand how classification predicts the categorical class (or discrete values), whereas regression and other models predict continuous valued functions.
What's included
4 videos4 readings4 assignments
In this module, you will be continuing with classification modeling. This module will introduce you to the k nearest neighbors. This module will help you apply the k nearest neighbors method to business problems. This module will further explain the working of k nearest neighbors. After going through this module, you will be able to run k nearest neighbors in RStudio.
What's included
4 videos4 readings4 assignments1 discussion prompt
This assessment is a graded quiz based on the modules covered in this week.
What's included
1 assignment
In this module, you will learn about logistic regression. When you are interested in predicting the likelihood of an event, the most widely used classification method is logistic regression. When the classification problem at hand is binary, true or false, and yes or no, then you use logistic regression-based classification.
What's included
4 videos4 readings4 assignments
In this module, you will learn about discriminant analysis. When you know the groups a priori, the classification method used is discriminant analysis. This module will help you run discriminant analysis binomial and multinomial categorical variables.
What's included
4 videos4 readings4 assignments1 discussion prompt
This assessment is a graded quiz based on the modules covered in this week.
What's included
1 assignment
In this module, you will learn about decision trees. When there is non-linear data in hand for classification, the classification method that is used preferably is the decision tree. Their most important feature is the capability of capturing descriptive decision-making knowledge from the supplied data. This module will make you familiar with the concept of information gain and entropy. This module will further help you create the decision tree for business problems.
What's included
4 videos4 readings4 assignments
In this module, you will learn about neural networks. This module gives you an insight into how you can use a neural network when you have so much data with you (and computational power, of course), and accuracy matters the most to you. If it comes to predictive accuracy, then neural network–based classification models are the ones that are preferred.
What's included
4 videos4 readings4 assignments
In this module, you will learn about the important steps of dimension reduction. In data mining, one often encounters situations where there are a large number of variables in the database. Even when the initial number of variables is small, this set quickly expands in the data preparation step, where new derived variables are created, for instance, dummies for categorical variables and new forms of existing variables. In such situations, it is likely that subsets of variables are highly correlated with each other. Including highly correlated variables in a classification or prediction model or including variables that are unrelated to the outcome of interest can lead to overfitting, and accuracy and reliability can suffer.
What's included
4 videos4 readings4 assignments
In this module, you will learn how clustering refers to the grouping of records, observations, or cases into classes of similar objects. You will get insights into how a cluster is a collection of records that are similar to one another and dissimilar to records in other clusters. In this module, you will be able to understand distance measures and how different types of distance measures are used in clustering. You will also be introduced to the quality and an optimal number of clusters, and the various types of clustering methods, such as hierarchical clustering, single-linkage clustering, and complete-linkage clustering. Finally, you will learn about dendrograms, displaying the clustering process and results, and the limitations of hierarchical clustering.
What's included
4 videos4 readings4 assignments1 discussion prompt
This assessment is a graded quiz based on the modules covered in this week.
What's included
1 assignment
In this module, you will be introduced to non-hierarchical clustering: the K-means clustering algorithm, its computation process, and its advantages. You will also learn to determine the correct number of clusters. Finally, you will be able to give the interpretation of clusters and market segmentation using conjoint analysis.
What's included
4 videos4 readings4 assignments
In this module, you will learn how to use rule base machine learning models to analyze and discover interesting connections, patterns, and relationships between different item sets based on large volume transaction data. This module will give you an insight into how association rule mining measures the strength of co-occurrence between one item and another. The objective of this rule base data mining algorithm is not to predict an occurrence of an item, like classification or regression do, but to find usable patterns in the co-occurrences of the items. You will also learn about association rules learning, which is a branch of an unsupervised learning process that discovers hidden patterns in data, in the form of easily recognizable rules.
What's included
4 videos4 readings4 assignments1 discussion prompt
This assessment is a graded quiz based on the modules covered in this week.
What's included
1 assignment
This module describes the learning objectives, assignment brief, review criteria, grading criteria, and submission instructions for the Staff Graded Team Assignment for the course.
What's included
1 video
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Build toward a degree
This course is part of the following degree program(s) offered by O.P. Jindal Global University. If you are admitted and enroll, your completed coursework may count toward your degree learning and your progress can transfer with you.¹
Instructor

Offered by
Why people choose Coursera for their career





Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
More questions
Financial aid available,